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Abstract

We describe the collection of transcription corrections and grammatical error annotations for the
CROWDED Corpus of spoken English monologues on business topics. The corpus recordings
were crowdsourced from native speakers of English and learners of English with German as their
first language. The new transcriptions and annotations are obtained from different crowdworkers:
we analyse the 1108 new crowdworker submissions and propose that they can be used for auto-
matic transcription post-editing and grammatical error correction for speech. To further explore
the data we train grammatical error detection models with various configurations including pre-
trained and contextual word representations as input, additional features and auxiliary objectives,
and extra training data from written error-annotated corpora. We find that a model concatenat-
ing pre-trained and contextual word representations as input performs best, and that additional
information does not lead to further performance gains.

1 Introduction

We introduce a new resource for speech-centric natural language processing (speech NLP) – more than
a thousand transcriptions and error annotations for 383 distinct recordings from the CROWDED Corpus
(Caines et al., 2016). CROWDED is a crowdsourced English corpus of short monologues on business
topics, recorded by both native and non-native speakers. It was created in response to the lack of speech
corpora freely available for research use, and the lack of appropriate native speaker reference corpora
with which language learners’ exam monologues can be compared. In this new project, crowdworkers
were asked to first correct existing speech transcriptions and then to edit the resulting transcriptions to
make them more fluent. These new annotations enable both post-editing of noisy speech transcriptions
– such as might come from automatic speech recognisers – and also grammatical error correction for
spoken English.

There has been a marked increase in openly-available NLP resources in recent years, especially for
English, but these have on the whole been sourced from written texts. Public resources for speech NLP,
on the other hand, are relatively scarce, even for English – though English is again by far the best served
in this respect. Obtaining linguistic data from large, distributed, online workers (‘crowdsourcing’) has
become a well-established practice. With the contribution of these new annotations, we note that the
CROWDED Corpus now features a thousand recordings which have all been transcribed, and of which
almost 40% now have improved transcriptions and error annotations thanks to this work. The entire
corpus has been collated through crowdsourcing means.

In this paper we describe the method for collecting the new data, analyse the annotations received,
and report on some initial grammatical error detection experiments (GED). In the GED experiments we
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trial various configurations which have been successful in GED for written texts. We found that we can
identify errors in the transcriptions fairly reliably using a publicly-available sequence labeller adapted
to take contextual word representations as additional input, similar to previous work on GED in written
corpora (Rei and Yannakoudakis, 2016; Bell et al., 2019). All new transcriptions and annotations referred
to in this paper are made available on the corpus website1.

2 Related Work

Compared to the relatively abundant amounts of written text corpora, there are fewer speech corpora in
which both transcriptions and audio files have been made available, even for the English language. Some
well-known exceptions include the British National Corpus (BNC Consortium, 2001), the Switchboard
Corpus (Godfrey et al., 1992), and AMI Corpus (Carletta et al., 2006). However, it is now almost thirty
years since the BNC and Switchboard recordings were made, Switchboard is only available for a fee,
and all three contain spontaneous dialogues – either on general (BNC and Switchboard) or business top-
ics (AMI) – whereas we have a research interest in assessing spoken monologues in language exams.
In terms of non-native speaker English, one of the few freely available corpora is The NICT Japanese
Learner English Corpus (JLE; Izumi et al. (2004)). Again, this corpus contains transcriptions of conver-
sations about general topics, which are certainly of interest but not the type of data we need to work with
relating to our other work on speech assessment (Wang et al., 2018; Craighead et al., 2020): namely,
short monologue responses by learners of English.

One reason why speech corpora are rare is that their preparation is a labour-intensive process: human
effort is required to obtain recordings, transcriptions and optionally annotations. Crowdsourcing has
been widely used for corpus annotation, whether word senses (Lopez de Lacalle and Agirre, 2015),
system evaluation (Rayner et al., 2011), grammatical errors (Madnani et al., 2011), as well as speech
transcription (Evanini et al., 2010). In the case of the CROWDED Corpus, crowdsourcing was used for
the whole data collection process, from recording to transcription and annotation, and was found to be
cost-effective (Caines et al., 2016).

Even rarer are freely-available speech corpora with grammatical error annotations: indeed it is the first
one we know of, because NICT JLE does offer error-annotated transcriptions but does not make the audio
files available. Grammatical error annotations can be used to train and evaluate machine learning models
in the GED task, in which classifiers are required to identify grammatical errors in word sequences. Most
of the previous work on GED has tended to focus on written corpora (Foster and Vogel, 2004; De Felice
and Pulman, 2008; Tetreault and Chodorow, 2008; Rei and Yannakoudakis, 2016; Kasewa et al., 2018;
Bell et al., 2019). There has been less GED research with spoken corpora but that is more a reflection of
the scarcity of appropriate data than a lack of interest. There has been work to assess grammatical accu-
racy by spoken CALL systems (‘computer-assisted language learning’) where such judgements might be
rule-based (Lee et al., 2014) or compared to a reference if the task is suitably constrained (de Vries et al.,
2015). There have been several shared tasks requiring binary acceptability judgements (correct/incorrect)
at the utterance level (Baur et al., 2017; Baur et al., 2018; Baur et al., 2019). Treating spoken GED as a
word classification task is a more recent approach (Knill et al., 2019; Lu et al., 2019), one which applies
the sequence labelling approach for written GED of Rei and Yannakoudakis (2016) and Rei (2017) to
speech transcriptions. It involves pre-training models on large written datasets – e.g. the FCE Corpus
(Yannakoudakis et al., 2011) – and then fine-tuning to the target spoken corpus.

3 The CROWDED Corpus

We use the CROWDED Corpus for our experiments (Caines et al., 2016). The first release of the
CROWDED Corpus included one thousand short recordings in German and English from eighty people,
transcribed into thirty-four thousand word tokens. All speech recordings and transcriptions were col-
lected through crowdsourcing platforms (Crowdee2 and CrowdFlower3 respectively), and it was demon-

1https://www.ortolang.fr/market/corpora/ortolang-000913
2http://www.crowdee.de/en
3http://www.crowdflower.com
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Figure 1: R Shiny web-app for CROWDED transcription correction and error annotation.

strated that crowdsourcing is a fast, feasible and cost-effective method of corpus collation.
The speakers responded to 20 questions designed to prompt spontaneous monologues of up to one

minute about imagined business scenarios. For instance, in the scenario of being asked to give advice
about setting up a new shop, speakers were asked to respond to prompts such as the following: what do
you think is the best location for a retail business? what are the most effective ways to advertise a new
shop? why is it important to find good suppliers? There were 4 different scenarios: setting up a new
shop, preparing for business visitors from a foreign country, running a taxi company, and the pros and
cons of sponsoring sports events. Each scenario had 5 associated questions. Speakers who identified
themselves as speakers of both languages were prompted to answer 10 questions in English and 10 in
German; in the monolingual setting, speakers were asked to respond to all 20 questions in English.

There was a quality control filter on the collected recordings, flagging and removing any with poor au-
dio quality or in which the speaker failed to respond appropriately. Approved recordings were passed to
CrowdFlower workers for transcription, but only the English transcriptions were returned from Crowd-
Flower with acceptable quality: the German recordings were not successfully transcribed, either because
crowdworkers falsely claimed to know the language, or the job settings requiring German competence
did not properly filter the worker pool. Therefore we focus on the English section of the corpus in the
remainder of the paper, and intend to revisit the German data in future work. In what follows we describe
the subset of recordings which have been error annotated since the initial release of the corpus, and report
on our experiments to automatically detect grammatical errors in the transcriptions.

3.1 Crowdsourcing transcription correction & error annotation

Each recording in the CROWDED Corpus has been transcribed twice but it is not clear how to resolve
this into a single transcription version. In this new work, we use an ASR-based method for the merger
of different transcription versions developed by van Dalen et al. (2015). In that work the method was
shown to produce a combined transcription which is more accurate than either version on its own, and
the same is true for our data (section 3.2). We then uploaded the merged transcriptions to the Prolific
platform (Palan and Schitter, 2018), along with the audio recordings, where crowdworkers reviewed
the new transcriptions and edited them where necessary. We required that workers were educated to at
least GCSE level (a U.K. exam aimed at 16 year olds) or equivalent, had an approval rate of at least
95% from previous studies, and listed English as a first language. Prolific requires a fair rate of pay to
workers, above or equivalent to the U.K.’s minimum hourly wage, but outputs tend to be better quality
than from other crowdsourcing services (Peer et al., 2017). We asked workers to correct and annotate
12 transcriptions as a unit of work, a task estimated to take 30 minutes, for which they were paid £3.10
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(equivalent to approximately US$4 at the time). Noting that there is a service fee payable to Prolific, in
common with other services, our funding allowed us to pay 100 workers in total.

One drawback of crowdsourcing from the researcher’s point of view is the lack of training and contact
time with workers. On the other hand its main advantages are the scale and speed of data collection,
along with evaluations from population groups one might not normally reach in campus-based studies
(Paolacci and Chandler, 2014; Difallah et al., 2018). Another issue is the bursty nature of responses:
upon publishing the task there tends to be a rush of early responses. The consequence is that the central
record of transcription correction does not keep pace with the issuing of work, and so a few transcriptions
are issued to workers many times, whereas the intention was to limit the number of new annotations per
item and thereby achieve greater coverage of the original corpus. This is a flaw which we will address in
future work either with a redesign of the workflow, or a shift to more expensive but more evenly-paced
and controllable local annotation.

Besides transcription correction, we asked Prolific workers to apply minimal grammatical error cor-
rections to their updated transcriptions, in order to make them “sound like something you would expect
to hear or produce yourself in English”. With this statement we intended to convey the error correction
task to crowdworkers in a straightforward way without the use of jargon: to alter the text into some-
thing linguistically acceptable in that worker’s judgement, without referring to notions of grammar or
‘correctness’ which may have particularly strong connotations for some.

We developed the annotation web-app in R Shiny (Chang et al., 2020), adapted from Caines et al.
(2017a) with a simple user-interface and text instructions kept to a minimum so as not to overload the
workers with information. The relevant audio recordings were provided for unlimited playback, and
workers were presented with the ‘machine-made’ transcription which was formed from the original two
CrowdFlower transcriptions, along with the prompt for context. There were two text boxes, firstly for
the worker to edit the existing transcription so that it better matched the recording, and the second being
a copy of that updated transcription ready for the second task of error correction. A screenshot of the
transcription correction and error annotation web-app is shown in Figure 1.

After quality checks and capping the number of submissions for a single item at 10, we reduced our
1200 submissions from Prolific (12 submissions from 100 workers) to 1108 submissions covering 383
unique recordings (mean: 2.9 per recording) which were selected at random from the original thousand
recordings in the CROWDED Corpus. Figure 2 shows a histogram of transcriptions and annotations per
recording. This is the set of data we work with in the remainder of this paper, totalling 39.7K word
tokens (mean: 35.9 per transcription).

3.2 Error-annotated CROWDED dataset

Of the 1108 new transcriptions we received from Prolific workers, 80% had been updated in some way
compared to the merged versions of the original CrowdFlower transcriptions. We aligned the merged and
corrected transcriptions using the ERRANT toolkit (Bryant et al., 2017), which lists the edit operations
to transform one text into another. These lists indicate that across the whole dataset there were 12 edits
for every 100 tokens in the original transcriptions – whether a replacement, deletion or insertion. For
transcriptions from the native speakers of English in the dataset, corrections were applied to 7% of word
tokens; whereas for learners of English the correction rate was 17%, indicating that transcription is a
harder and consequently more error-prone task with learner English speech.

Taking these new Prolific transcriptions as the ground truth, we can calculate the word error rate
(WER) of the original CROWDED transcriptions obtained from CrowdFlower. Recall that each recording
was transcribed twice in the original study: let us randomly assign each version to a transcription set for
comparison with the new transcriptions. Thus the mean WER is 19.4% for version 1 averaged across all
new versions from Prolific, and for version 2 it is 18.5%. WER for the merged transcriptions drops to
12%, confirming the benefit of that method.

On average there are just under 3 Prolific submissions for each original CROWDED transcription, with
a median of 2, minimum of 1 and maximum of 10. Within each recording’s set of updated transcriptions,
similarity scores are good, indicating general agreement. We calculate one-versus-rest string distances
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Figure 2: Histogram of transcriptions and annotations per recording.

using optimal string alignment – the restricted Damerau-Levenshtein distance (van der Loo, 2014) for
each transcription within the set of other transcriptions for that recording. On average the string distance
within transcription sets is 18 characters, set against an average transcription length of 200 characters.
This is good, but also underlines the fact that transcription is a subjective process: not all transcribers
perceive the same words, especially when the speaker is unclear or the audio is degraded4.

Meanwhile, 80% of the corrected transcriptions were edited for grammatical errors in some fashion, at
an average of 21 edits per 100 word tokens. Again we align and type the identified errors using ERRANT.
Table 2 in the appendix imitates Table 4 in Bryant et al. (2019), listing the frequency of error types as
proportional distributions. We present these statistics for the whole dataset, and then the native speakers
of English and learners of English separately, with statistics from the FCE Corpus for comparison.

Note that the edit rate in grammatical error correction of the transcriptions is not greatly different
between the native speaker and learner groups at 18.9% and 23.9% respectively. The native speakers do
produce more word tokens per recording (51.3 versus 27.0) as might be expected in comparing fluent
native speakers of any language to learners with varying levels of proficiency. The main differences in
terms of edit types are that unnecessary word tokens occur in native speaker transcriptions more than
they do in learner transcriptions, where the replacement error type is the most common.

The distribution of error types (the middle section of Table 2) is broadly similar between native speaker
and learner groups, with more ‘other’ errors in native speaker transcriptions than in learner transcriptions,
in which there are more determiner, preposition and verb errors. In other words, there are more of the
formal errors in learner speech which are typically found in written learner corpora: for comparison the
most common error types in the FCE Corpus (Yannakoudakis et al., 2011) are ‘other’, prepositions and
determiners (Bryant et al., 2019), though the ‘other’ type is much less frequent at just 13.3% of the errors
in that corpus. Punctuation and spelling are the next most frequent error types in the FCE, each forming
more than 9% of the total edit count.

In our CROWDED annotations the most frequent error types are ‘other’, punctuation and nouns, fol-
lowed by determiners, orthography and verb. The ‘other’ group is the largest by far, one reason being
that the ERRANT typology was designed for written language, and so disfluencies such as filled pauses,
partial words, and false starts fall into this category (Caines et al., 2017b). It may seem odd that punc-
tuation and orthography errors feature in the correction of speech transcriptions, but the former type of
edit was invited in the Shiny web-app with the request to “insert full-stops (periods) to break up the text

4For any readers curious about this, we have prepared a web-app which invites the user to transcribe an audio recording and
view string distances between their transcription and the crowdsourced transcriptions in the corpus: https://cainesap.
shinyapps.io/crowded
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if necessary” (Figure 1). Again, we did not aim to be overly prescriptive in defining this task, adhering
to previous work indicating that ‘speech-unit delimitation’ in transcriptions is an intuitive task which de-
pends on a feel for appropriate delimitation based on some combination of syntax, semantics and prosody
(Moore et al., 2016). One could more definitely require that the units be syntactically or semantically
coherent but this was more instruction than we wished to give in a crowdsourcing interaction.

Orthography edits relate to the speech-unit delimitation task: they are changes in character casing
due to the insertion of full-stops by the crowdworkers, and as such are not errors made by the speaker
but rather a step towards making the transcriptions more human-readable. Included in the ‘other’ error
category are filled pauses (‘er’, ‘um’, etc) which are filtered before GED because we can remove these
with a rule. Note that filled pauses are a common occurrence in naturalistic speech, and hence are
produced as much by native speakers – 273 instances, or 7% of the transcription edits made for this
group – as by the learners (256 instances, or 5.6% of edits).

4 Grammatical error detection

Automatic grammatical error detection in natural language is a well-developed area of research which
tends to involve one of several established datasets: for example, the FCE Corpus (Yannakoudakis et al.,
2011), CoNLL-2014 (Ng et al., 2014) , JFLEG (Napoles et al., 2017), and the Write & Improve Corpus
(W&I; Bryant et al. (2019)) among others. These corpora all contain written essays, whether written for
language exams (FCE, JFLEG) or for practice and learning (CoNLL-2014, W&I). Thus techniques for
GED are advanced and tuned to the written domain. We evaluate how well these methods transfer to
spoken language.

GED is usually treated as a separate task to grammatical error correction (GEC) – which involves
proposing edits to the original text. GEC could be an area for future work with the CROWDED Corpus,
but at first we wish to explore GED for this speech dataset, anticipating that performance will be quite
different to GED on written texts in which error types more often relate to word forms, punctuation and
spelling (Table 2).

The state-of-the-art approach to GED involves sequence labelling word tokens as correct or incorrect
with a bi-directional LSTM: the original model (Rei and Yannakoudakis, 2016) has evolved to include
forwards and backwards language modelling objectives (Rei, 2017) and contextual word representations
concatenated to pre-trained word-level representations (Bell et al., 2019). In addition, multi-task learning
has proven effective for GED, with auxiliary predictions of error types, part-of-speech tags and grammat-
ical relations aiding model performance (Rei and Yannakoudakis, 2017). We take these insights forward
to GED in the CROWDED Corpus, running a series of experiments with modifications to the publicly
available sequence labeller released with Rei (2017)5. Note that F0.5 has been the standard evaluation
metric for GED since Ng et al. (2014), and it weights precision twice as much as recall.

4.1 Data pre-processing

As explained in section 3.2 the Prolific transcriptions and error-corrected versions were tokenized and
aligned with ERRANT: we then converted the resulting M2 format files into CoNLL-style tables in
readiness for the sequence labeller. In the first column of the tables are the word tokens, one on each
line, while in the final column is a ‘correct’ (c) or ‘incorrect’ (i) label for that token. Note that ‘missing’
error types are carried by the word token following the missing item, and that error labels are shared
across tokens if they have been split from a single white-space delimited token (e.g. an erroneous “it’s”
would carry an ‘i’ label on both “it” and “’s”).

We created ten train-development-test data splits in order to carry out ten-fold cross-validation in
our GED experiments. Transcriptions were assigned to data splits in batches associated with distinct
recordings. That is, where we have multiple transcriptions and annotations for a single recording, these
are placed together in the same split. For each fold, recording sets were randomly selected from the 383
in the corpus until we had filled the development and test splits. As there are 1108 transcriptions in the
corpus, we sought out a minimum of 110 transcriptions for the development and test splits in each fold.

5https://github.com/marekrei/sequence-labeler
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Most of the folds have 110 or 111 transcriptions in development and test: the largest such split contains
115 transcriptions. We make our pseudo-random splits available for the sake of reproducibility.

We opted for cross-validation rather than a single train-development-test split because, with several
recordings each being associated with many transcriptions, there is a danger of over-concentrating the
smaller splits (development and test) with many similar texts. In the scenario of only having one dataset
split, conclusions about the generalisability of our GED models would have therefore been limited. We
add extra information to the text files from several sources: morpho-syntactic labels obtained from a
parser, n-gram frequencies from several corpora, the identification of complex words, ERRANT, and
prosodic features from the CROWDED audio recordings.

Specifically, the morpho-syntactic labels come from the pre-trained English Web Treebank (UD v2.4)
parsing model for UDPipe (Bies et al., 2012; Nivre et al., 2019; Straka and Straková, 2017; Wijffels,
2019). For each word token we obtain a lemma, Universal part-of-speech tag (UPOS), Penn Treebank
part-of-speech tag (XPOS), head token number and dependency relation directly from UDPipe’s out-
put. The motivation for preparing such information was that certain error types may occur with tell-tale
morpho-syntactic signals, and furthermore predicting such labels has been of benefit in multi-task learn-
ing approaches to GED (Rei and Yannakoudakis, 2017).

The n-gram frequencies were obtained for values of n = {1, 2, 3} from the following corpora: the
CROWDED Corpus itself, the British National Corpus (BNC Consortium, 2001), and the One Billion
Word Benchmark (Chelba et al., 2014). In this case there were 6 values per corpus: a unigram frequency,
two bigram frequencies with the target word in both first and second position of the gram, and three
trigram frequencies with the target word in all three positions. The intuition here is that frequency
information may be useful in identifying ungrammatical word sequences: if the n-gram is low frequency,
that might indicate an error.

For each word token in the CROWDED Corpus we added a binary complexity label obtained from
a model pre-trained on separate data (Gooding and Kochmar, 2019). Words in the complexity training
data were labelled as complex or not by twenty crowdworkers (Yimam et al., 2017), and the model is
currently state-of-the-art for the complex word identification task. We expect that complex words are
more likely to be involved in or around grammatical errors. In total 4485 word tokens were identified as
complex – for instance, ‘guarantee’, ‘presentation’, and ‘suppliers’.

Error types were obtained from ERRANT (Bryant et al., 2017) based on the alignment of the Prolific
transcription and its error-corrected version. Predicting error types, such as R:NOUN (replace noun),
M:DET (missing determiner), and so on, as an auxiliary task improved GED performance in previous
work (Rei and Yannakoudakis, 2017).

Finally, we extracted a number of prosodic values associated with each word token from the audio
recordings. First we force aligned the transcriptions with the audio using the SPPAS toolkit (Bigi, 2015).
Based on the resulting token start and end timestamps we could then calculate token durations, durations
of any pauses preceding or following word tokens, and a number of values relating to the pitch and
amplitude of the speaker’s voice measured in 10 millisecond increments.

Thus for each token we collect the speaker’s initial and final fundamental frequency (F0), the minimum
and maximum, mean and standard deviation. We do the same for voice amplitude, or energy (E). Values
of F0 and E are first smoothed with a 5-point median filter (Fried et al., 2019) in common with prosodic
feature extraction described in previous work (Lee and Glass, 2012; Moore et al., 2016). The motivation
for collecting such values is that speakers may display certain prosodic patterns – such as pausing before
or afterwards – where they find speech production difficult and therefore may produce a grammatical
error, or where they realise that they have recently or are in the process of making an error.

4.2 Experiment configuration

Our initial experiments did not involve additional features or auxiliary tasks: fundamentally we ini-
tialise input word vectors with pre-trained word representations and train the sequence labeller to predict
whether each word token is a grammatical error. At first we ran several hyperparameter tuning experi-
ments with manual search, recognising that grid search or random search might be more thorough, but
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Model P R F0.5 Hours
GloVe300 .386 (.115) .111 (.058) .227 (.063) 1.18
GloVe300+BERTBASE .488 (.070) .258 (.059) .405 (.040) 2.52

Table 1: CROWDED Corpus GED with a sequence labeller and pre-trained (GloVe300) or contextual
(BERTBASE) word representations as input. Precision, recall and F0.5 are averaged over 10-fold cross-
validation executed 10 times (standard deviations in brackets), with average time per run in hours.

also wishing to keep computational cost to a minimum (Strubell et al., 2019). Furthermore we tuned
hyperparameters based on intuition and experience so as to offer good coverage of likely optimal values.

The state-of-the-art for GED involves contextual word representations concatenated to pre-trained
representations. We tried several different pre-trained word representations as input to the model: English
fastText vectors trained on 600B tokens from Common Crawl (Mikolov et al., 2018), Wikipedia2Vec
trained on an April 2018 English Wikipedia dump (Yamada et al., 2020), and English GloVe trained on
840B tokens from Common Crawl (Pennington et al., 2014).

We also tried several different types of contextual word representation, obtained from the HuggingFace
Transformers library using Flair NLP (Wolf et al., 2019; Akbik et al., 2019). These were namely:
BERTBASE and BERTLARGE (Devlin et al., 2019), ELMo (Peters et al., 2018), FLAIR news (Akbik
et al., 2018), GPT2 large (Radford et al., 2019), RoBERTa large (Liu et al., 2019), Transformer-XL
(Dai et al., 2019), and XLNet (Yang et al., 2019). We compared the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001 and AdaDelta with a learning rate of 1.0 (Zeiler, 2012), and also tried
different batch sizes of 16, 32 and 64.

The extra information described in section 4.1 was used for various experiments with additional fea-
tures concatenated to the input embeddings, or as auxiliary objectives in multi-task learning settings.
The additional features were treated as discrete or real values: real values were optionally normalised
to values with a mean of 0 and standard deviation of 1, and discrete features were encoded as one-hot
vectors (dimensionality reduction was attempted with no positive impact on performance). For auxiliary
objectives we experimented with weights of 1.0, 0.1 and 0.01. As in both Knill et al. (2019) and Lu
et al. (2019), we introduce error-annotated learner essays as additional training data – namely the FCE,
W&I and JFLEG corpora. We try three settings for each corpus: training on the written data only and
evaluating on CROWDED, or fine-tuning a pre-trained written GED model on CROWDED training texts,
or combining the written and CROWDED corpora for training from the outset.

Recall that we set up our dataset for 10-fold cross-validation. As well as 10-folds, all experiments
involve 10 different random seeds to provide us with a fair picture of variance in model training and
performance. F0.5 is the primary metric and results are reported as the mean of all seeds and folds
(i.e. 10 folds x 10 seeds = 100 values). Average time is reported per experimental run (i.e. per set of
cross-validation experiments, or per random seed).

4.3 Results

In terms of hyperparameter search, the best performing model involves contextual word representations
from BERTBASE concatenated to pre-trained GloVe representations. The AdaDelta optimizer with a
learning rate of 1.0 out-performed Adam with a learning rate of 0.001, and a batch size of 32 was better
than 64 or 16. We label this best model ‘GloVe300+BERTBASE’. This result is compared to a baseline
GloVe300 approach without BERTBASE representations in summary Table 1. The difference between the
two models is statistically significant (Wilcoxon signed-rank test: p < 0.001).

Full hyperparameter experiments are reported in Table 3 (appendix). Note that GloVe300+BERTBASE
is not the best across the board but rather has the best combination of precision and recall: experiments
with both the Adam optimizer and a larger batch size of 64 achieve higher precision; a smaller batch size
of 16 achieves higher recall. Nevertheless GloVe300+BERTBASE is the best performing model overall.

We report results with additional features and auxiliary objectives in the appendix in Table 4 (second
table section downwards). In summary, no additional features or auxiliary objectives out-performed the
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Figure 3: Recall for each edit and error type in the CrowdED and FCE corpora using the
GloVe300+BERTBASE GED model. Selected types with at least 1% of edits or errors in each corpus.

GloVe300+BERTBASE model, which we take to mean that BERT representations are very strong, and any
additional information for a dataset of this size only adds noise. Or it may be that different feature types
or auxiliary objectives are required for spoken error detection. We infer this conclusion from experiments
with a GloVe300 model (no BERT) in which additional features do improve performance (top section,
Table 4) so are evidently not unhelpful in themselves.

Similarly, experiments with extra training data from written corpora do show improvement over the
GloVe300 model (no BERT) but not over the best GloVe300+BERTBASE model (appendix Table 5),
whether combining written and spoken corpora from the outset or pre-training on written texts and fine-
tuning on spoken data. It is possible that larger such corpora are needed to show any gain over a +BERT
model: Knill et al. (2019) and Lu et al. (2019) use the 14 million word Cambridge Learner Corpus
(Nicholls, 2003) and do see improvements in GED on other spoken corpora (NICT JLE and a Cambridge
Assessment dataset) after fine-tuning.

4.4 Analysis
State-of-the-art performance with a similar model to GloVe300+BERTBASE yields an F0.5 of .573 for the
FCE Corpus (Bell et al., 2019). Performance on CROWDED data is quite a bit lower: about .4 at best. We
analyse performance on each of the edit and error types listed in Table 2, calculating accuracy of error
detection for each type in the FCE test set and one of the ten CROWDED test sets (i.e. calculating recall).
Figure 3 shows the edits and errors separately, including only those types which represent at least 1% of
the edits in the test set. The proportion each type represents is indicated by datapoint size, CROWDED
points are dark and FCE points are light, and the y-axis shows recall.

The first indicator of worse performance is the difference between CROWDED and FCE recall for the
‘replacement’ edit type (the majority edit type). The ‘missing’ edit type is also worse for CROWDED
while ‘unnecessary’ edits are detected with better recall in CROWDED than FCE. Recall on the majority
error type, ‘other’, is a little better in CROWDED than FCE, but for determiners and nouns it is notably
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worse. Also we see that spelling recall is very high for the FCE, whereas this error type is absent
from CROWDED (except for some transcription anomalies). Of course this plot only tells part of the
story: precision of GED is much higher on the FCE (currently .650 state-of-the-art) and therefore we are
predicting more false positives in CROWDED which merits further investigation in future work.

5 Conclusion

In this paper we have presented a new resource for speech NLP: 1108 separate corrected transcriptions
and grammatical error annotations for 383 distinct English recordings from the CROWDED Corpus.
These are available for research use6 and complement the existing CROWDED audio files and original
transcriptions available in the same place. These data enable further research into automatic post-editing
of speech transcriptions for readability (inserting full-stops and orthographic correction), which we have
not explored here but could do in future work. In addition the error annotations allow experiments in
grammatical error detection and correction (GED and GEC).

We undertook GED experiments in this work, using methods shown to be highly effective on written
corpora. We find that a combination of contextual and pre-trained word representations as inputs to a
bi-directional LSTM lead to good performance in sequence labelling word tokens in speech transcrip-
tions as correct or incorrect. Performance is still some way off that for written GED, which perhaps
may be accounted for by the small size of the dataset compared to written ones, the fact that the word
representations are trained on written rather than spoken data, and the fairly different composition of
error types found in CROWDED compared to equivalent written corpora. These factors, along with the
possible need for extra pre-processing of the transcriptions to handle characteristic features of spoken
language such as disfluencies, ellipsis and sections of unclear speech, may be explored in future work.

Another future improvement will be to augment the CROWDED Corpus with new data: new tasks, new
languages, new recordings and annotation. Note that there are hundreds of CROWDED recordings which
do not have the transcription updates and error annotation described here, so if funding allows there is
unrealised potential in the existing data, besides adding to it with new data. Further insight may come
from adapting the error typology to the spoken domain, in particular subdividing the majority ‘other’
error type into new types specific to spoken language, and then learning to better detect and correct
these. We will then be able to improve upon the best GloVe300+BERTBASE model with techniques for
GED which are tailored to the kinds of errors found in spoken language.
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Appendix A: corpus statistics & GED experiment results

FCE All speakers Native speakers Learners

Edit type
Missing 21.0% 13.9% 12.8% 14.8%
Replacement 64.4% 47.9% 44.3% 51.0%
Unnecessary 11.5% 38.2% 42.9% 34.2%

Error type

Adjective 1.4% 0.8% 0.5% 1.0%
Adjective:form 0.3% 0.06% 0.1% 0.02%
Adverb 1.9% 1.5% 1.5% 1.8%
Conjunction 0.7% 1.3% 1.1% 1.5%
Contraction 0.3% 0.4% 0.6% 0.4%
Determiner 10.9% 4.0% 2.6% 5.2%
Morphology 1.9% 0.6% 0.4% 0.7%
Noun 4.6% 5.8% 5.5% 6.1%
Noun:inflection 0.5% 0.01% 0.0% 0.02%
Noun:number 3.3% 1.0% 1.0% 1.3%
Noun:possessive 0.5% 0.1% 0.2% 0.02%
Orthography 2.9% 3.0% 3.4% 2.9%
Other 13.3% 61.0% 66.3% 56.4%
Particle 0.3% 0.5% 0.6% 0.4%
Preposition 11.2% 2.9% 2.0% 3.7%
Pronoun 3.5% 1.2% 1.0% 1.4%
Punctuation 9.7% 8.7% 8.8% 8.7%
Spelling 9.6% 0.3% 0.3% 0.4%
Verb 7.0% 3.1% 2.1% 3.9%
Verb:form 3.6% 0.4% 0.4% 0.6%
Verb:inflection 0.2% 0.01% 0.0% 0.02%
Verb:subj-verb-agr 1.5% 0.3% 0.2% 0.4%
Verb:tense 6.0% 1.1% 0.6% 1.7%
Word order 1.8% 1.2% 0.8% 1.6%

Corpus stats

N.speakers - 76 30 46
Recordings - 383 140 243
Texts/Transcripts 1244 1108 406 702
Word tokens 531,416 39,726 20,814 18,912
Total edits 52,671 8454 3926 4528

Table 2: The proportional distribution of error types determined by Prolific crowdworkers for a subset
of the CROWDED Corpus (for a full description of error types see Bryant et al. (2017)); followed by
descriptive corpus statistics. Proportions supplied for the FCE Corpus for comparison, from Bryant et al.
(2019).
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Model Learned as P R F0.5 Hours
GloVe300 n/a .386 (.115) .111 (.058) .227 (.063) 1.18
+Lemma discrete.feat:50w .373 (.099) .123 (.061) .239 (.057) 1.80
+UPOS discrete.feat:16w .385 (.115) .113 (.055) .232 (.067) 1.46
+XPOS discrete.feat:50w .377 (.111) .114 (.063) .226 (.063) 1.33
+DepRel discrete.feat:39w .391 (.115) .112 (.059) .233 (.063) 1.76
+HeadToken real.feat:normed .388 (.120) .098 (.052) .213 (.064) 1.39
+ComplexWord discrete.feat:1w .378 (.111) .119 (.076) .231 (.061) 1.45
GloVe300+BERTBASE n/a .488 (.070) .258 (.059) .405 (.040) 2.52
+Lemma discrete.feat:50w .455 (.080) .233 (.053) .372 (.043) 4.84
+UPOS discrete.feat:16w .450 (.076) .235 (.057) .372 (.046) 5.12
+XPOS discrete.feat:42w .457 (.078) .250 (.069) .380 (.046) 2.13
+DepRel discrete.feat:39w .449 (.078) .257 (.061) .380 (.042) 2.74
+HeadToken real.feat:unnormed .456 (.079) .229 (.057) .370 (.045) 5.06
+ComplexWord discrete.feat:1 .452 (.074) .260 (.067) .383 (.046) 2.27
+Lemma discrete.target:wt1.0 .450 (.077) .236 (.056) .371 (.041) 4.49
+Lemma discrete.target:wt0.1 .447 (.074) .241 (.057) .372 (.042) 4.42
+Lemma discrete.target:wt0.01 .456 (.078) .231 (.060) .373 (.045) 4.73
+XPOS discrete.target:wt1.0 .454 (.073) .226 (.053) .369 (.042) 5.98
+XPOS discrete.target:wt0.1 .458 (.085) .233 (.061) .371 (.040) 5.93
+XPOS discrete.target:wt0.01 .453 (.081) .230 (.057) .368 (.044) 5.93
+DepRel discrete.target:wt1.0 .457 (.070) .231 (.055) .373 (.041) 4.71
+DepRel discrete.target:wt0.1 .454 (.081) .232 (.058) .369 (.042) 4.86
+DepRel discrete.target:wt0.01 .451 (.075) .237 (.060) .372 (.043) 5.26
+HeadToken real.target:wt1.0 .454 (.079) .236 (.058) .373 (.039) 5.01
+HeadToken real.target:wt0.1 .447 (.077) .241 (.058) .372 (.044) 4.98
+HeadToken real.target:wt0.01 .454 (.077) .236 (.055) .373 (.043) 4.92
+ComplexWord discrete.target:wt1.0 .449 (.076) .242 (.063) .373 (.044) 5.05
+ComplexWord discrete.target:wt0.1 .452 (.078) .244 (.055) .377 (.043) 4.89
+ComplexWord discrete.target:wt0.01 .454 (.084) .228 (.055) .368 (047) 4.93
+ErrorType discrete.target:wt1.0 .453 (.075) .237 (.063) .372 (.042) 4.80
+ErrorType discrete.target:wt0.1 .449 (.078) .232 (.058) .368 (.040) 5.35
+ErrorType discrete.target:wt0.01 .448 (.073) .235 (.051) .371 (.042) 5.24
+CrowdEDfreqs real.feat:normed .444 (.073) .264 (.066) .381 (.042) 2.62
+BNCfreqs real.feat:normed .458 (.067) .249 (.064) .383 (.043) 2.62
+1BWfreqs real.feat:normed .452 (.076) .231 (.052) .371 (.039) 5.99
+WordDuration real.feat:normed .453 (.083) .232 (.055) .370 (.042) 3.68
+PauseDuration real.feat:normed .456 (.077) .230 (.051) .373 (.046) 4.54
+Pitch real.feat:normed .450 (.079) .233 (.055) .370 (.046) 4.15
+Energy real.feat:normed .449 (.077) .237 (.055) .372 (.047) 4.54

Table 4: CROWDED Corpus GED with additional features and auxiliary objectives. Precision, recall
and F0.5 averaged over 10-fold cross-validation executed 10 times (standard deviations in brackets), with
average time per run in hours. Features are marked as discrete or real-valued, with discrete features
encoded as one-hot vectors and their width noted, and real-valued features may be normalised to values
between 0 and 1. Auxiliary objectives are marked as discrete or real-valued targets, with varying weights.
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Model CROWDED injection P R F0.5 Hours
GloVe300 outset .386 (.115) .111 (.058) .227 (.063) 1.18
+FCE none .180 (.) .042 (.) .108 (.) 2.46
+FCE outset* .409 (.046) .133 (.067) .273 (.032) 25.3
+FCE fine-tuning .386 (.038) .169 (.047) .303 (.042) 1.21
+W&I none .411 (.) .089 (.) .238 (.) 2.79
+W&I outset* .434 (.008) .154 (.041) .313 (.038) 32.5
+W&I fine-tuning .392 (.076) .183 (.067) .305 (.048) 0.85
+JFLEG none .312 (.) .128 (.) .242 (.) 0.06
+JFLEG outset .405 (.147) .130 (.072) .231 (.078) 1.80
+JFLEG fine-tuning .358 (.072) .136 (.079) .243 (.051) 0.91
GloVe300+BERTBASE outset .488 (.070) .258 (.059) .405 (.040) 2.52
+FCE none .427 (.) .205 (.) .351 (.) 8.34
+FCE outset* .460 (.056) .218 (.037) .371 (.031) 82.7
+FCE fine-tuning .460 (.082) .214 (.044) .365 (.042) 4.93
+W&I none .462 (.) .211 (.) .373 (.) 13.2
+W&I outset* .467 (.049) .234 (.037) .386 (.036) 91.2
+W&I fine-tuning .464 (.064) .224 (.044) .375 (.036) 5.23
+JFLEG none .365 (.) .402 (.) .372 (.) 0.38
+JFLEG outset .450 (.075) .258 (.061) .382 (.042) 5.31
+JFLEG fine-tuning .458 (.083) .225 (.050) .371 (.046) 3.80

Table 5: CROWDED Corpus GED with additional training data. Precision, recall and F0.5 averaged over
10-fold cross-validation executed 10 times (standard deviations in brackets; dots indicate that there was
only one run and hence no standard deviation), with average time per run in hours. Point of introduction
of CROWDED training data is noted as ‘none’ (no CROWDED data used in training), ‘outset’ (mixed
with written corpus) or ‘fine-tuning’ (used to update the weights of a pre-trained model). *Asterisked
experiments were run with 4 random seeds rather than 10 due to their long duration.


